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Background

 Computer vision: How do we represent an image?



Background

 Models do not generalize well to new domains; not like humans!

 Are big data always available?

 It is impossible to consider data in all scenarios.

 Data can be protected under privacy regulation.

Sinno Jialin Pan, et.al., “A Survey on Transfer Learning.” IEEE TKDE 2010



Domain Adaptation: Train on Source and Adapt to Target

ImageNet CiFAR100



Sample Re-weighting 

[Huang,NIPS’06]

Subspace Learning 

[Fernando, ICCV’13]

Adversarial Learning [Ganin, ICML’15, Tzeng, CVPR’17]

Domain Adaptation: Train on Source and Adapt to Target



Domain Adaptation: Train on Source and Adapt to Target

ImageNet CiFAR100
Are we able to obtain 

unlabeled testing data?



Domain Adaptation: Train on Source and Adapt to Target

ImageNet CiFAR100

NO!

Real-time deployment

Data privacy regulation



Domain Generalization

Domain Generalization (DG): Build a system for previously unseen 

datasets, given one or multiple training datasets.

• Data augmentation and generation

• Distribution alignment

• Meta-learning

• Contrastive Learning

• Adversarial Training

• …

Testing 

Data NOT

Available!



Data augmentation

 Typical augmentation
 Rotation, noise, color…

 Domain randomization (DR)
 Randomly draw K real-life categories from ImageNet for stylizing the synthetic images.

Yue et al. Domain Randomization and Pyramid Consistency: Simulation-to-Real Generalization without Accessing Target Domain Data. ICCV,2019.



Domain randomization 

• Tobin, et al. Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World. IROS 2017.
• Tremblay et al. Training Deep Networks with Synthetic Data: Bridging the Reality Gap by Domain Randomization. CVPR workshop 2018.

Sim->Real robot control Synthetic images -> Real images

Domain randomization through graphics software.



Context-aware randomization

Prakash et al. Structured Domain Randomization: Bridging the Reality Gap by Context-Aware Synthetic Data. 2018.



Adversarial data augmentation

 CrossGrad: Adversarially augment data via gradient training
 Generate data that are with same label 𝑦, but different domain label 𝑑

 ADV augmentation
 Learning the worse-case distribution to enable generalization

• Shankar et al. Generalizing across Domains via Cross-Gradient Training. ICLR 2018.
• Volpi, et al. Generalizing to Unseen Domains via Adversarial Data Augmentation. NeurIPS 2018.



Data generation

 Directly generate data
 Learning to generate, instead of randomization / adversarial augmentation (Fixed scheme)

• Kingma D P, Welling M. Auto-encoding variational bayes[J]. arXiv preprint arXiv:1312.6114, 2013.

• Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[J]. Advances in neural information processing systems, 2014, 27.

• Zhang H, Cisse M, Dauphin Y N, et al. Mixup: Beyond empirical risk minimization[J]. arXiv preprint arXiv:1710.09412, 2017.

Variational auto-encoder (VAE) Generative adversarial net (GAN) Mixup



Data generation

VAE for generation Multi-component generation

Conditional GAN for generation
Image stylization

• Qiao et al. Learning to Learn Single Domain Generalization. CVPR 2020.
• Rahman et al. Multi-component Image Translation for Deep Domain Generalization. 2020.
• Zhou et al. Learning to Generate Novel Domains for Domain Generalization. ECCV 2020.
• Somavarapu et al. Frustratingly Simple Domain Generalization via Image Stylization. 2020.



Mixup

• Wang et al. DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations. 2020.
• Wang et al. Heterogeneous domain generalization via domain mixup. ICASSP 2020.

• Zhou et al. Domain generalization with mixstyle. ICLR 2021.

DomainMix
Style mixupMixAll



Representation Learning

 Learning features which are expected to be better generalized to unseen target domain. 

w/o domain 

generalization

with domain 

generalization

overfitting



Kernel-based methods

 Using kernel methods to learn domain-invariant features
 DICA: domain-invariant component analysis

 TCA: Transfer Component Analysis

 SCA: Scatter Component Analysis 

• Blanchard et al. Generalizing from Several Related Classification Tasks to a New Unlabeled Sample. NeurIPS 2011.
• Muandet et al. Domain Generalization via Invariant Feature Representation. ICML 2013.
• Grubinger et al. Domain Generalization Based on Transfer Component Analysis. IWANN 2015. 
• Ghifary et al. Scatter Component Analysis: A Unified Framework for Domain Adaptation and Domain Generalization. TPAMI 2017.



Explicit feature alignment

 Learning shareable information across domain
 Maximum mean discrepancy:

 KL Divergence:

 Correlation alignment: 

Ya Li, et al., Deep domain generalization via conditional invariant adversarial networks, ECCV 2018

Haoliang Li, et al., Domain Generalization for Medical Imaging Classification with Linear-Dependency, NeurIPS, 2020

Jin X, Lan C, Zeng W, et al. Style Normalization and Restitution for Domain Generalization and Adaptation, Arxiv, 2021.



Domain adversarial learning

• Haoliang Li et al. Domain Generalization with Adversarial Feature Learning. CVPR 2018.
• Rui Gong et al. DLOW: Domain Flow for Adaptation and Generalization. CVPR 2019.

MMD-AAE

DLOW



Contrastive Learning

Motiian, et al., Unified Deep Supervised Domain Adaptation and Generalization, ICCV’17

Dou, et al., Domain Generalization via Model-Agnostic Learning of Semantic Features, NeurIPS’19

Minimizing/Maximizing feature distance among samples from with same/different 

category information from different domains



Feature disentanglement

Invariant feature learning + style transfer

Yufei Wang, et al., Variational Disentanglement for Domain Generalization, Arxiv 2021



 Deep features eventually transit from general to specific along the network.

 Shallow Layer extracts shareable information while deep layer extracts category specific 

information (with regularization). 

…

Cat

• Haoliang Li, et.al., “GMFAD: Towards Generalized Visual Recognition via Multi-Layer 

Feature Alignment and Disentanglement”, T-PAMI 2020

Multi-layer Feature Learning



Multi-layer Feature Learning

 Feature disentanglement at deep layer.

 Neuron independence regularization

𝑃 𝐻1, 𝐻2, … , 𝐻𝑑′
= 𝑃 𝐻1 𝑃 𝐻2 … 𝑃(𝐻𝑑)

Total Correlation Minimization 

through dimension permutation 

[Arcones1992]

[Arcones1992] M. A. Arcones and E. Gine, “On the bootstrap of u and v statistics,” The Annals of Statistics, pp. 

655–674, 1992.



Domain-Invariant Learning with Uncertainty

• Uncertainty should be taken into account during domain-invariant learning. 

Zehan Xiao, et al., A Bit More Bayesian: Domain-Invariant Learning with Uncertainty , ICML’21

Xiaotong Li, et al., Uncertainty Modeling for Out-of-Distribution Generalization." ICLR’22.

Bayesian Neural Network Uncertainty modeling through re-parameterization trick



Different learning strategy for DG

 Meta-learning
 Divide domains into several tasks, then use meta-learning to learn general knowledge

 Ensemble learning
 Design ensemble models

 Gradient operation
 Alter the gradient interaction between domains

 Distributionally robust optimization
 Acquire models that are better for worst-case distribution scenario

 Self-supervised learning

 Others



Meta-learning

 Learning to learn, or meta-learn the general knowledge
 Instead of the original tasks, meta-learning wants to acquire knowledge about new tasks

Meta-knowledge acquisition Meta-knowledge validation

Huisman M, Van Rijn J N, Plaat A. A survey of deep meta-learning[J]. Artificial Intelligence Review, 2021, 54(6): 4483-4541.



Meta-learning for DG

• Li D, Yang Y, Song Y Z, et al. Learning to generalize: Meta-learning for domain generalization. AAAI 2018.

• Balaji Y, Sankaranarayanan S, Chellappa R. Metareg: Towards domain generalization using meta-regularization. NeurIPS 2018.

 How to adopt meta-learning for DG?
 Key: Old tasks to new tasks in meta-learning → Old domains to new domains

 MLDG: Meta-learning for DG

 MetaReg: meta-learning for regularization



Meta-learning for DG

 Feature-critic training
 Learning the regularization terms using 

meta-learning

 Meta-VIB
 Meta variational information bottleneck to 

model uncertainty between domain shifts

Li Y, Yang Y, Zhou W, et al. Feature-critic networks for heterogeneous domain generalization. 

ICML 2019.

Du Y, Xu J, Xiong H, et al. Learning to learn with variational information bottleneck for domain 

generalization. ECCV 2020.



Meta-learning for DG

 DADG: MLDG with adversarial training

• Chen K, Zhuang D, Chang J M. Discriminative adversarial domain generalization with meta-learning based cross-domain 

validation. Neurocomputing 2022.

• Sharifi-Noghabi H, Asghari H, Mehrasa N, et al. Domain generalization via semi-supervised meta learning[J]. arXiv preprint 

arXiv:2009.12658, 2020.

 DGSML: MLDG with semi-supervised 

learning



Ensemble learning

 Is a single model or representation enough for generalization?

Linear

Regression

K nearest

Neighbors

Decision

Tree

Neural

Network

Acc: 80% Acc: 85% Acc: 91% Acc: 90%

Linear

Regression

K nearest

Neighbors

Decision

Tree

Neural

Network

Ensemble

Model

Acc: 98%
Ensemble 

Models

Bagging Boosting Stacking

• Ensemble learning allows for 

more diversities in feature and 

classifier learning

• The power from the crowd



Ensemble learning for DG

 Ensemble-learned DG representations
 Feature weighting Feature combination Feature attention

• Mancini M, Bulo S R, Caputo B, et al. Best sources forward: domain generalization through source-specific nets. ICIP 2018.

• Segu M, Tonioni A, Tombari F. Batch normalization embeddings for deep domain generalization[J]. arXiv preprint arXiv:2011.12672, 2020.

• D’Innocente A, Caputo B. Domain generalization with domain-specific aggregation modules[C]//German Conference on Pattern Recognition. 

Springer, Cham, 2018: 187-198.



Ensemble learning for DG

 Ensemble learning for classifier learning
 SEDGE: ensemble of pre-trained models for classifier learning

Li Z, Ren K, Jiang X, et al. Domain Generalization using Pretrained Models without 

Fine-tuning[J]. arXiv preprint arXiv:2203.04600, 2022.

Zhou K, Yang Y, Qiao Y, et al. Domain adaptive ensemble learning[J]. IEEE TIP 

2021.

DAEL: domain adaptive ensemble learning



Ensemble learning for DG

 Is ensemble learning enough for DG?
 No. Ensemble → domain-specific knowledge

 We also need a balance with domain-invariant knowledge

 AFFAR: Adaptive Feature Fusion

Domain-specific features

+Domain-invariant features

Qin et al. Domain generalization for activity recognition via adaptive 

feature fusion. ACM TIST 2022.



Gradient operation for DG

 Model the interactions between cross-domain gradients

Fish: gradient inner product

• Shi Y, Seely J, Torr P H S, et al. Gradient matching for domain generalization. ICLR 2022.

• Chris Xing Tian, Haoliang LI, et al. Neuron-coverage guided domain generalization. TPAMI 2023.

NCDG: gradient L2 norm 

(with coverage regularization)



Self-supervised learning for DG

 Construct pretext tasks for general representation learning

• Carlucci F M, D'Innocente A, Bucci S, et al. 

Domain generalization by solving jigsaw puzzles. 

CVPR 2019.

• Kim D, Yoo Y, Park S, et al. Selfreg: Self-

supervised contrastive regularization for domain 

generalization. ICCV 2021.

Self-supervised learning

JiGen: Jigsaw puzzle + DG

Selfreg: self-supervised contrastive loss



GroupDRO: Convex hull + 
Regularization

VRex: Convex hull + Perturbation + Risk 
variance

• S. Sagawa, P. W. Koh, T. B. Hashimoto, and P. Liang, “Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case 
generalization,” in ICLR, 2020.

• D. Krueger, E. Caballero, J.-H. Jacobsen, A. Zhang, J. Binas, D. Zhang, R. Le Priol, and A. Courville, “Out-of-distribution generalization via risk extrapolation (rex),” in ICML, 
2021, pp. 5815–5826.

Distributionally robust optimization for DG

 Learn a model at worst-case distribution scenario



Other learning strategy

 Other interesting learning strategy for DG

Shapelet feature: invariant across domains SWAD: Smooth training loss

• Narayanan M, Rajendran V, Kimia B. Shape-biased domain generalization via shock graph embeddings. ICCV 2021.

• Cha J, Chun S, Lee K, et al. Swad: Domain generalization by seeking flat minima. NeurIPS 2021.



Applications and benchmarks for DG

 Wide applications across CV, NLP, RL, and others

Figure credit: DG survey by Wang et al. (TKDE’22)



Wide applications of DG

 Computer vision
Image classification

Style transfer

Semantic segmentation

Action recognition

Test

Person ReID



Wide applications of DG

 Natural language processing

 Reinforcement learning

DVD Book Kitchen appliance Electronic device

Train Test

Sentiment classification

Semantic parsing

Sim-to-real

Robot

control



Wide applications of DG

 Medical applications

COVID X-ray classification Tissue segmentation

Parkinson’s disease diagnosis

[Li, NeurIPS’20]



Benchmarks for DG

 Important consideration for DG benchmarks:

 Popular datasets

 Common benchmarks and codebases

 Evaluation strategy: model selection

Note:

• Technically, any application settings that fits in DG scenario can be 

considered as a good test bed.

• There exists no “golden-standard” for benchmarking and evaluation.

d

Which dataset? Which codebase? Which metric?



Datasets for DG

 Common benchmarks



Benchmark and codebase

 DomainBed
 A unified benchmark for domain generalization

https://github.com/facebookresearch/DomainBed

Interesting results: DomainBed found that there are not significant 

improvements for recent DG algorithms. Is it the case?

https://github.com/facebookresearch/DomainBed


Benchmark and codebase

 DeepDG
 Built by borrowing the knowledge from DomainBed, but faster, and easier to use

https://github.com/jindongwang/transferlearning/tree/master/code/DeepDG

• Avoids huge hyperparameter tuning

• More friendly interface

• Better customization

https://github.com/jindongwang/transferlearning/tree/master/code/DeepDG


Model selection

 Model selection in DomainBed
 Test-domain validation set (oracle)

 Use part of test domain as the validation

 Leave-one-domain-out cross-validation

 One domain as testing domain for validation

 Training-domain validation set (popular)

 Leave some part of the training data as the validation set

𝒟2𝒟1 𝒟3 𝒟4

Train

Validation

Test

Assume 𝒟4 is the 

unseen test domain 

• Q: is it reasonable to use training-domain validation 

for model selection? 

• A: no. Since the validation distribution cannot 

represent the test distribution.



Discussion about the performance of DG

 Performance should be restricted to certain applications
 Cross-dataset human activity recognition[1]

 Cross-dataset object detection[2]

[1] Lu et al. Semantic-discriminative mixup for generalizable cross-domain sensor-based human activity recognition. ACM IMWUT 2022.

[2] Jin X, Lan C, Zeng W, et al. Style normalization and restitution for domain generalization and adaptation. IEEE TMM 2021.

Hint: maybe we should develop application-oriented evaluation benchmarks?



Theory

 Domain adaptation error bound
 The error on target domain is bounded by:

Source risk

Source-target distribution divergence

Complexity of ℋTarget risk

ℋ-divergence:

ℋΔℋ-distance:

Discrepancy distance:

• Ben-David S, Blitzer J, Crammer K, et al. Analysis of representations for domain adaptation. NIPS 2016.

• Ben-David S, Blitzer J, Crammer K, et al. A theory of learning from different domains[J]. Machine learning, 2010, 79(1): 151-175.

• Mansour Y, Mohri M, Rostamizadeh A. Domain adaptation with multiple sources. NIPS 2009.



Theory

 Domain generalization error bound
 There’s no target in DG. How to measure the error?

 Key: approximate target domain using the convex hull of source distributions

 Other theory: average source risk

 DG theory is in infant and on the go!

Target risk

Weighted source risk Distance between target and convex hull

Diameter of Λ

Ideal joint risk (best source vs. target)

Blanchard G, Lee G, Scott C. Generalizing from several related classification tasks to a new unlabeled sample. NIPS 2011.

Albuquerque I, Monteiro J, Darvishi M, et al. Adversarial target-invariant representation learning for domain generalization[J]. 2020.



Invariant risk minimization

 IRM
 Do not match distributions; enforce optimal classifier on top of the representation space to be 

the same across all domains

Arjovsky et al. Invariant risk minimization. arXiv preprint arXiv:1907.02893, 2019



New DG settings

 Some new DG settings

Setting Description

Traditional domain generalization The traditional setting

Evolving domain generalization Domains gradually change

Test-time domain 

adaptation/generalization

Updating model by using target domain/data

Federated domain generalization Training data cannot be accessed by central server

Open domain generalization Training and test domains have different label spaces

Unsupervised domain generalization Training domains are totally unlabeled

• Tiexin Qin, Shiqi Wang, and Haoliang Li, Generalizing to Evolving Domains with Latent Structure-Aware Sequential Autoencoder, ICML’22

• Chenyu Yi, Siyuan Yang, Yufei Wang, Haoliang Li, Yap-Peng Tan and Alex C. Kot, Temporal Coherent Test Time Optimization for Robust Video 

Classification, ICLR’23

• Zhang L, Lei X, Shi Y, et al. Federated Learning with Domain Generalization[J]. arXiv preprint arXiv:2111.10487, 2021.

• Shu Y, Cao Z, Wang C, et al. Open domain generalization with domain-augmented meta-learning. CVPR 2021.

• Qi L, Wang L, Shi Y, et al. Unsupervised Domain Generalization for Person Re-identification: A Domain-specific Adaptive Framework[J]. arXiv

preprint arXiv:2111.15077, 2021.



New DG settings

 Some new DG settings

Setting Situation

Traditional domain generalization The traditional setting

Evolving domain generalization Domains gradually change

Test-time optimization Updating model by using target domain/data

Federated domain generalization Training data cannot be accessed by central server

Open domain generalization Training and test domains have different label spaces

Unsupervised domain generalization Training domains are totally unlabeled

• Tiexin Qin, Shiqi Wang, and Haoliang Li, Generalizing to Evolving Domains with Latent Structure-Aware Sequential Autoencoder, ICML’22

• Chenyu Yi, Siyuan Yang, Yufei Wang, Haoliang Li, Yap-Peng Tan and Alex C. Kot, Temporal Coherent Test Time Optimization for Robust Video 

Classification, ICLR’23

• Zhang L, Lei X, Shi Y, et al. Federated Learning with Domain Generalization[J]. arXiv preprint arXiv:2111.10487, 2021.

• Shu Y, Cao Z, Wang C, et al. Open domain generalization with domain-augmented meta-learning. CVPR 2021.

• Qi L, Wang L, Shi Y, et al. Unsupervised Domain Generalization for Person Re-identification: A Domain-specific Adaptive Framework[J]. arXiv

preprint arXiv:2111.15077, 2021.



Automated driving system

Disease diagnosis

Young Old
Age

absent

Morning Night
Time

absent

Evolving Domain Generalization



Latent Structure-aware Sequence AutoEncoder (LSSAE)

Bayesian rule:

𝑃 𝑋, 𝑌 = 𝑃 𝑋 𝑃(𝑌|𝑋)

Distribution shift:

(1) Covariate shift

𝑃(𝑋𝑠) ≠ 𝑃(𝑋𝑡)

(2) Concept shift

𝑃(𝑌𝑠|𝑋𝑠) ≠ 𝑃(𝑌𝑡|𝑋𝑡)

• Tiexin Qin, Shiqi Wang, Haoliang Li. Generalizing to Evolving Domains with Latent Structure-

Aware Sequential Autoencoder. ICML 2022.

Evolving Domain Generalization: Method



From casual diagram to probabilistic generative model 

Definition: latent codes (𝒛𝑐 , 𝒛1:𝑇
𝑤 , 𝒛1:𝑇

𝑣 )
𝒛𝑐 : static domain-invariant category information from 𝑋
𝒛1:𝑇

𝑤 : dynamic domain-specific information from 𝑋
𝒛1:𝑇

𝑣 : dynamic domain-specific category information from 𝑌

(1) Markov chain of the latent codes:

(2) Probabilistic generative model :

𝑝 𝐱1:𝑇 , 𝐲1:𝑇 , 𝒛𝑐 , 𝒛1:𝑇
𝑤 , 𝒛1:𝑇

𝑣

= 𝑝 𝐱1:𝑇 , 𝒛1:𝑇
𝑤 , 𝒛𝑐 𝑝(𝐲1:𝑇 , 𝒛1:𝑇

𝑤 |𝒛𝑐)

(4) Evidence lower bound (ELBO) for optimization:

ℒ𝑑 = σ𝑡=1
𝑇 𝔼𝑞(𝒛𝑐,𝒛𝑡

𝑤,𝒛𝑡
𝑣) log 𝑝(𝐱𝑡|𝒛𝑐 , 𝒛𝑡

𝑤)𝑝(𝒚𝑡|𝒛𝑐 , 𝒛𝑡
𝑣)

−𝜆1𝔻𝐾𝐿 𝑞 𝒛𝑐 𝐱1:𝑇 , 𝑝 𝒛𝑐

− 𝜆2𝔻𝐾𝐿 𝑞 𝒛𝑡
𝑤 𝒛<𝑡

𝑤 , 𝐱𝑡 , 𝑝 𝒛𝑡
𝑤 𝒛<𝑡

𝑤

− 𝜆3𝔻𝐾𝐿 𝑞 𝒛𝑡
𝑣 𝒛<𝑡

𝑣 , 𝐱𝑡 , 𝑝 𝒛𝑡
𝑣 𝒛<𝑡

𝑣

𝑝 𝒛𝑡
𝑤 = 𝑝 𝒛𝑡

𝑤|𝒛<𝑡
𝑤 , 𝑝 𝒛𝑡

𝑣 = 𝑝 𝒛𝑡
𝑣|𝒛<𝑡

𝑣

𝒛𝑐~𝒩(0,1) is a fixed Gaussian distribution

(3) Variational Inference to approximate the prior 

𝑞 𝒛𝑐 , 𝒛1:𝑇
𝑤 , |𝐱1:𝑇 ,  𝑞(𝒛1:𝑇

𝑣 |𝐲1:𝑇)

Evolving Domain Generalization: Method
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Evolving Domain Generalization: Method
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𝑤 : dynamic domain-specific information from 𝑋
𝒛1:𝑇

𝑣 : dynamic domain-specific category information from 𝑌

(1) Markov chain of the latent codes:

(2) Probabilistic generative model :

𝑝 𝐱1:𝑇 , 𝐲1:𝑇 , 𝒛𝑐 , 𝒛1:𝑇
𝑤 , 𝒛1:𝑇

𝑣

= 𝑝 𝐱1:𝑇 , 𝒛1:𝑇
𝑤 , 𝒛𝑐 𝑝(𝐲1:𝑇 , 𝒛1:𝑇

𝑤 |𝒛𝑐)

(4) Evidence lower bound (ELBO) for optimization:

ℒ𝑑 = σ𝑡=1
𝑇 𝔼𝑞(𝒛𝑐,𝒛𝑡

𝑤,𝒛𝑡
𝑣) log 𝑝(𝐱𝑡|𝒛𝑐 , 𝒛𝑡

𝑤)𝑝(𝒚𝑡|𝒛𝑐 , 𝒛𝑡
𝑣)

−𝜆1𝔻𝐾𝐿 𝑞 𝒛𝑐 𝐱1:𝑇 , 𝑝 𝒛𝑐

− 𝜆2𝔻𝐾𝐿 𝑞 𝒛𝑡
𝑤 𝒛<𝑡

𝑤 , 𝐱𝑡 , 𝑝 𝒛𝑡
𝑤 𝒛<𝑡

𝑤

− 𝜆3𝔻𝐾𝐿 𝑞 𝒛𝑡
𝑣 𝒛<𝑡

𝑣 , 𝐱𝑡 , 𝑝 𝒛𝑡
𝑣 𝒛<𝑡

𝑣

𝑝 𝒛𝑡
𝑤 = 𝑝 𝒛𝑡

𝑤|𝒛<𝑡
𝑤 , 𝑝 𝒛𝑡

𝑣 = 𝑝 𝒛𝑡
𝑣|𝒛<𝑡

𝑣

𝒛𝑐~𝒩(0,1) is a fixed Gaussian distribution

(3) Variational Inference to approximate the prior 

𝑞 𝒛𝑐 , 𝒛1:𝑇
𝑤 , |𝐱1:𝑇 ,  𝑞(𝒛1:𝑇

𝑣 |𝐲1:𝑇)
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• Classification results on two toy datasets (More results can be found in our 

paper)

• Generation performance on RMNIST

1. LSSAE shows a desired generalization ability to unseen target domains

2. An accurate decision boundary for gradual concept shift but plain result for abrupt concept shift 

Evolving Domain Generalization: Results



• Classification results on two toy datasets (More results can be found in our 

paper)

• Generation performance on RMNIST

LSSAE shows an ability of generating future unseen domains

Evolving Domain Generalization: Results



New DG settings

 Some new DG settings

Setting Description

Traditional domain generalization The traditional setting

Evolving domain generalization Domains gradually change

Test-time optimization Updating model by using target domain/data

Federated domain generalization Training data cannot be accessed by central server

Open domain generalization Training and test domains have different label spaces

Unsupervised domain generalization Training domains are totally unlabeled

• Tiexin Qin, Shiqi Wang, and Haoliang Li, Generalizing to Evolving Domains with Latent Structure-Aware Sequential Autoencoder, ICML’22

• Chenyu Yi, Siyuan Yang, Yufei Wang, Haoliang Li, Yap-Peng Tan and Alex C. Kot, Temporal Coherent Test Time Optimization for Robust Video 

Classification, ICLR’23

• Zhang L, Lei X, Shi Y, et al. Federated Learning with Domain Generalization[J]. arXiv preprint arXiv:2111.10487, 2021.

• Shu Y, Cao Z, Wang C, et al. Open domain generalization with domain-augmented meta-learning. CVPR 2021.

• Qi L, Wang L, Shi Y, et al. Unsupervised Domain Generalization for Person Re-identification: A Domain-specific Adaptive Framework[J]. arXiv

preprint arXiv:2111.15077, 2021.



Test-time Optimization

Wang et al., Tent: Fully Test-Time Adaptation by Entropy Minimization,ICLR’21

Iwasawa et al., Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization, NeurIPS’22

Setting
Source 

Data
Target Data Train Loss Test Loss

Fine Tune No Yes Yes No

Domain 

Adaption
Yes Yes Yes No

Domain 

Generalization
Yes No Yes No

Test-Time 

Optimization
No

Yes 
(batch/single 

sample)

No Yes

• Test-time optimization is an effective method in improving model robustness



Test-time optimization for video data

Hendrycks, ICLR’19
Yi, NeurIPS’21

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions and perturbations. ICLR, 2019.

Chenyu Yi, et al., Benchmarking the Robustness of Spatial-Temporal Models Against Corruptions, NeurIPS 2021



• TeCo – A Test-Time Optimization Framework for Robust Video Classification

• Entropy Minimization on Global Pathway (Input from Uniform Sampling)

• Apply Temporal Coherence Regularization on Local Path Way (Input from 

Dense Sampling)

Overall Objective:

Our Solution-Exploring temporal coherence



• TeCo outperforms other test-time optimization methods across architectures and datasets

• TeCo generates smoother feature maps

Results



Ref from: [Pei, SOSP’17]

Deep Learning vs. Software Engineering



Code / Logic not covered during testing → Bugs may exist

Full Coverage Testing Needed !

Data flow Analysis

• Code coverage 

• Statement coverage

• Function coverage

Control flow Analysis

• Brach coverage

• Conditions coverage

• …….

Code Coverage

Software  Quality Assurance



Accuracy based on standard test dataset is not sufficient.

Neuron Coverage for DNN testing

• Deep-Gauge [FSE’18]

• Deep-Test [ICSE’18]

• Deep-Hunter [ISSTA’19]

• …….

DeepXplore: Automated Whitebox Testing of 

Deep Learning Systems [SOSP’17]

Neuron Coverage

DNN  Quality Assurance



Machine Learning Algorithms

Distribution 

Alignment
Meta-Learning Contrastive 

Learning
Adversarial training

Domain Generalization

• C. X. Tian, Haoliang Li, et al., Neuron Coverage-Guided Domain Generalization, TPAMI2022

Neuron-Coverage Guided Domain Generalization



Machine Learning Algorithms

Distribution 

Alignment
Meta-Learning Contrastive 

Learning
Adversarial training

Treating the deep neural network as a software system

Domain Generalization

• C. X. Tian, Haoliang Li, et al., Neuron Coverage-Guided Domain Generalization, TPAMI2022

Neuron-Coverage Guided Domain Generalization



Neuron Coverage Guided Training

Neuron Coverage in DNN Testing → DNN Training

A neuron is inactive

during the WHOLE training process. 

Once it get activated during evaluation, 

errors may happen.

Data Flow in software

Code/Statement coverage

Data Flow in DNN

Neuron coverage

Neuron-Coverage Guided Domain Generalization



Neuron Coverage Loss

Activated Neuron:  Normalized output value ≥ threshold t 

When a New Epoch Starts

1. Set all neurons activation status as False

2. Each iteration: Keep track of inactivate neurons

3. Add up their outputs  to form Coverage Loss Term (weighted by 𝛌)

4. Maximize Coverage Loss Term in the next iteration.

Neuron-Coverage Guided Domain Generalization



Neuron Gradient

Neuron Coverage Isn’t Enough

• Neuron Activation → Binary Information (no layer interaction)

Control Flow in software

Brunch / Condition

Control Flow in DNN

Neuron Gradient

Neuron-Coverage Guided Domain Generalization



Neuron Gradient Similarity

Origin Sample: 𝒟s

Augmented Sample: ෡𝒟s

Same semantics

Similar Control Flow  

Similarity Loss Term (weighted by 𝛽)

Final Loss Function:

Neuron-Coverage Guided Domain Generalization



SSDG (Single Source Domain Generalization) 

Object classification (PACS)

Segmentation (GTA5-Cityscape)

NCDG: Results



MSDG (Multiple Source Domain Generalization) 
Leave-one-domain-out experimental protocol

NCDG: Results



• Visualization through network dissection

[Bau2020] D. Bau, J.-Y. Zhu, H. Strobelt, A. Lapedriza, B. Zhou, 

and A. Torralba, “Understanding the role of individual units in a 

deep neural network,” PNAS, 2020.

Software 

Coverage
AI Explainability

NCDG: Visualization



Shared causality across domains.

Input

Explanation

But can we believe 

such appealing 

visualizations?

Explanation for Model Generalization



No!Do positive attention weights indicate contribution effects?

Explainability through Attention



Evaluating two properties in explanation weights

⎼ Importance Correlation: 

Magnitude <-> Feature Importance

⎼ Polarity Consistency:

Sign <-> Polarity of Feature Impact

• Yibing Liu, Haoliang Li, et al., Rethinking Attention-model Explainability through Faithfulness Violation Test, ICML’22

How to evaluate the explanation faithfulness?



Evaluating two properties in explanation weights

⎼ Importance Correlation: 

Magnitude <-> Feature Importance

⎼ Polarity Consistency:

Sign <-> Polarity of Feature Impact

Previou

s 

Work

How to evaluate the explanation faithfulness?

• Yibing Liu, Haoliang Li, et al., Rethinking Attention-model Explainability through Faithfulness Violation Test, ICML’22



Evaluating two properties in explanation weights

⎼ Importance Correlation: 

Magnitude <-> Feature Importance

⎼ Polarity Consistency:

Sign <-> Polarity of Feature Impact

Ours 

Work

How to evaluate the explanation faithfulness?

• Yibing Liu, Haoliang Li, et al., Rethinking Attention-model Explainability through Faithfulness Violation Test, ICML’22



Steps: given a test sample     and an explanation method          : 

1. Find the most influential feature 

2. Estimate the feature impact of       based on the perturbation 

test

3. Check if the explanation weight aligns with the feature 

impact.

Idea: measure the ratio of test samples violating polarity consistency.

Our Solution: Faithfulness Violation Test



Experiments

• RQ1: Why we need the 
faithfulness violation test? 

• RQ2: How existing 
methods perform on 
faithfulness? 

• RQ3: What factors 
dominate the faithfulness 
violation issue? 



Comparison with Existing Metrics (RQ1)

Existing metrics are incapable of examining the polarity consistency!



Sanity Faithfulness Evaluation (RQ2)

Most tested explanation methods suffer from the faithfulness 
violation issue regarding polarity consistency.

(a) LSTM+DotAtt on QQP dataset (c) LXMERT on GQA dataset (b) BUTD on VQA 2.0 dataset 



Factor Analysis (RQ3)

Two dominant factors

• The capability to 
identify polarity

• The complexity of 
model architectures



Challenges

 Continuous domain generalization
 Continuous / online learning

 Generalize to novel categories
 New categories instead of closed set

 Interpretable domain generalization
 Learning to interpret: why it can generalize?

 Large-scale pre-training / self-learning and DG
 The role of pre-training and self-learning with DG

 Performance evaluation
 Develop more fair and application-driven evaluation standards



Conclusion

General ML Domain adaptation Domain generalization
Non-IID Unseen target

Introduction and background

Relation with existing area: transfer learning, domain adaptation, multi-task learning…

Algorithm

Data manipulation: augmentation, or generation

Representation learning: domain-invariant learning, disentanglement

Learning strategy: meta-learning, ensemble learning, gradient, DRO, SSL…

Applications: CV, NLP, RL, medical…

Datasets, benchmark, evaluation

Theory, Connection to explainability, and future challenges
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